Тема: Понятие производной. Формулы и правила дифференцирования.

Срок сдачи до 23.11.2024

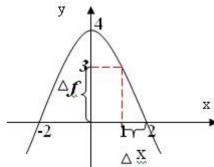
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ:

Просмотреть презентацию и видеоролик по ссылке: https://rutube.ru/video/9da4eb892ec67882a787ca9f5b5affc3/?r=wd

https://dzen.ru/video/watch/607d4d51eac7203d757e9abc?f=d2d

изучить теоретический материал по учебнику п.12 стр.97, п.15 стр.113.

Часто нас интересует не значение какой-либо величины, а ее **изменение.** Например: Дан график функции $y = 4 - x^2$



По графику найти значение функции в точке $x_1 = 1$ $u x_2 = 2$.

Разность
$$x_2 - x_1 = 2 - 1 = 1$$
; $\Delta x = 1$

$$f(1) = 3; f(2) = 0; f(2) - f(1) = 0 - 3 = -3$$

$$\Delta f = -3$$

В приведенном примере мы не только вычислили значения функции f(x) в некоторых точках, но и оценили изменения Δ f этой функции при заданных изменениях аргумента Δ х.

При сравнении значений функции f в некоторой фиксированной точке x_0 со значениями этой функции в различных точках x, лежащих в окрестности x_0 , удобно выражать разность f(x) - $f(x_0)$ через разность x - x_0 , пользуясь понятиями "приращение функции" и "приращение аргумента".

Рассмотрим функцию y = f(x). Пусть x - произвольная точка, лежащая в некоторой окрестности фиксированной точки x_0 . Разность $\underline{x} - \underline{x_0}$ называется приращением независимой переменной (или приращением

<u>аргумента</u>) в точке x_0 и обозначается Δx . Таким образом, $\Delta x = x - x_0$, откуда следует, что $x = x_0 + \Delta x$.

Говорят также, что первоначальное значение аргумента x_0 получило приращение Δx . Вследствие этого значение функции f изменится на величину f(x) - $f(x_0) = f(x_0 + \Delta x) - f(x_0)$.

Эта разность называется <u>приращением функции f в точке x_0 </u>, соответствующим приращению Δx , и обозначается Δf , т. е. по определению

$$\Delta$$
 f = f (x₀+ Δ x) – f(x₀), откуда f (x₀+ Δ x) = f(x₀) + Δ f.

 \triangle Обратите внимание: при фиксированном значении x_0 приращение $\triangle f$ есть функция от $\triangle x$.

Пример 1:

Найти приращение аргумента и приращение функции в точке х₀, если

$$f(x) = x^2$$
 $x = 1,9$
$$\Delta x = x - x_0;$$

$$\Delta x = 1,9 - 2 = -0,1;$$

$$\Delta f = f(x) - f(x_0);$$

$$\Delta f = f(1,9) - f(2) = 1,9^2 - 2^2 = 3,61 - 4 = -0,39$$

Решение: Ответ: $\Delta x = -0.1$; $\Delta f = -0.39$

Рассмотрим график функции y = f(x). Геометрический смысл приращения функции можно понять, рассмотрев рисунок. (Слайд 6.) Прямую l, проходящую через любые две точки графика функции f, называют **секущей** к графику f. Уравнение прямой на плоскости имеет вид y = kx + b. Угловой коэффициент k секущей, проходящей через точки f(x) и f(x), равен f(x) раве

$$tg\alpha = \frac{BC}{AC}$$
 или k=tg $\alpha = \frac{\Delta f}{\Delta x}$

$$\mathcal{N}_{2}184(a)$$
 $f(x) = \frac{1}{2}x^{2}; x_{1} = 0; x_{2} = 1$ $Pemehuetg\alpha = \frac{\Delta f}{\Delta x};$ $\Delta f = f(x) - f(x_{0});$ $\Delta x = x - x_{0};$ $\Delta f = f(1) - f(0) = \frac{1}{2} \cdot 1^{2} - \frac{1}{2} \cdot 0^{2} = \frac{1}{2}$ $k = tg\alpha = \frac{1}{2} \succ 0 \Rightarrow \alpha - ocmpuŭ$ $Omsem:tg\alpha = \frac{1}{2}; \alpha - ocmpuŭ$

Таблица производных

1.
$$c' = 0$$
, $c = \text{const}$
2. $(x^n)' = nx^{n-1}$
3. $(a^x)' = a^x \cdot \ln a$
4. $(e^x)' = e^x$
5. $(\log_a x)' = \frac{1}{x \ln a}$
6. $(\ln x)' = \frac{1}{x}$
7. $(\sin x)' = \cos x$
8. $(\cos x)' = -\sin x$
9. $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$
10. $(\operatorname{tg} x)' = -\frac{1}{\sin^2 x}$
($c \cdot u$)' = $c \cdot u$ '
($u \cdot v$)' = $u' \cdot v + u \cdot v$ '
($u \cdot v$)' = $u' \cdot v - u \cdot v$ '

ДОМАШНЕЕ ЗАДАНИЕ

Составить конспект материала, совместно с разбором задач.

Контрольные вопросы:

1. Понятие приращение аргумента и формула.

- 2.Понятие приращения функции и формула.
- 3. Понятие секущей.
- 4.Понятие тангенса угла наклона секущей к оси абсцисс и формула.
- 5. Таблица производных функции и правила дифференцирования выписать в тетрадь
- 6. решить № 208